
Preprocessor Statements

Overview of Preprocessor Statements

Statements to Include Copy Code Generated from Predict file objects

The preprocessor statements COPY, FORMAT-BUFFER and GENERATE in COBOL, PL/I and Assembler
programs instruct the preprocessor to include data definitions or a format buffer.

COPY
Instructs the preprocessor to insert copy code which has previously been generated by Predict. XRef data is written
for the file and each field in the file.

FORMAT-BUFFER
Instructs the preprocessor to generate an Adabas format buffer and insert it at the position of the statement. XRef
data is written for the file and each field in the file.

GENERATE
Instructs the preprocessor to generate a record buffer and optionally a format buffer and insert it at the position of the
statement. XRef data is written for the file and each field in the file.

Statements to Write XRef Data for 3GL Copy/Include Code or Function Calls

The preprocessor statements ENTRY and CALL - if included in Assembler programs - instruct the preprocessor to
write XRef data for entry points or the call of external programs. Information to be written to XRef data is specified
in parameters of the statement.

CALL
Specifies the name of a called external program or function that is to be stored in the active reference records. This
command can only be used for Assembler programs.

ENTRY
Specifies the name of a program entry that is to be stored in the active reference records. This command can only be
used for Assembler programs.

PROGRAM
Member ID used in XRef data. This statement is interpreted only if no member name is specified when the
Preprocessor is called.

Format of Preprocessor Statements
The following rules apply to preprocessor statements:

Preprocessor statements start with EXEC ADABAS (there may be any number of blanks between the two
words, but both must be coded on the same line).
Preprocessor statements can be terminated in any of the following ways:

with the statement END-EXEC
in COBOL by a period (.)
in PL/I by a semicolon (;)
In BAL, the preprocessor terminates processing at the end of the current card unless a continuation
character is punched in column 72.

The preprocessor assumes standard statement layout in BAL, for example the Assembler statement ICTL is not
valid.
Preprocessor control statements are left in the source program as comments.

1Copyright Software AG 2002

Preprocessor StatementsPreprocessor Statements

Using Keyword and/or Positional Parameters

Parameters of preprocessor statements can be specified in positional or keyword form. Both forms are described
below.
Keyword and positional parameters can be mixed. This allows the use of a keyword parameter as a starting
point for subsequent positional parameters, as shown in the following example:
For Assembler, the INIT parameter is the eighth parameter of the EXEC Adabas GENERATE statement.
VALIDATION is the next parameter in the list and can therefore be specified as a positional parameter directly
behind the INIT parameter.

EXEC ADABAS GENERATE <file-name>,INIT=<init>,<validation>

CALL
The name of a called external program or function can be specified for Assembler programs. The name is stored in
the active reference records.

Syntax with Positional Parameters

EXEC ADABAS CALL <function-name>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS CALL FUNCTION=<function-name>
 END-EXEC

Parameters

function-nameThe name of a called external program or function that should be stored in the active reference
records. Maximum length: 8 characters.

COPY
Instructs the preprocessor to include copy code previously generated by Predict. If more than one copy code member
has been generated for the appropriate file and language, the copy code name must be specified.
XRef data is written for the file and each field in the file.

Copying a Member from a File that has been Modified after Generation

This statement can also be used if the file has been modified after the corresponding member was generated. The
system behavior depends on the Predict version with which the member was generated and on parameter Ignore
changes. See table below.

Syntax

with Positional Parameters

EXEC ADABAS COPY <file-name><copycode-name> <ignore-changes>
 END-EXEC

Copyright Software AG 20022

Preprocessor StatementsCALL

with Keyword Parameters

EXEC ADABAS COPY FILE=<file-name>
 MEM=<copycode-name>
 IGNORE-CHANGES=<ignore-changes>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Parameters

file name The ID of the Predict file object from which the copy code was generated. See GENERATE for a list of
file types that can be used for generating copy code.

member
name

The member name which was supplied during copy code generation. Maximum length: 8 characters.

ignore
changes

This parameter determines whether a member connected to a file that has been modified after
generation is copied.

N
Default. A member connected to a file that has been modified after generation is not copied.
The Preprocessor issues an error message and terminates with condition code 107.

Y
A member connected to a modified file is copied - irrespective of whether the member contains usage
information. With this option, the preprocessor writes the XRef data on the basis of the current
documentation of the file in Predict.
A warning is given if the file object has been modified after generation, since using this option may
result in inconsistent XRef data. See Additional Usage Information for Fields in a File.

X
A member of a modified file is only copied if it was generated with Predict version 3.3 or above. With
this version, additional information on the usage of fields in the file is available. This information is
used by the Preprocessor when writing XRef data. See Additional Usage Information for Fields in a
File.
If the file has been modified since generation and the usage information is not available because the
member was generated with an earlier version of Predict, the Preprocessor issues an error message and
terminates with condition code 107.

ENTRY
Declares the name of an entry point in Assembler programs. The name is stored in the active reference records.

Syntax with Positional Parameters

EXEC ADABAS ENTRY <entry-name>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS ENTRY FUNCTION=<entry-name>
 END-EXEC

Parameters

entry-name The name of an entry point to be stored in the XRef data. Maximum length: 8 characters.

3Copyright Software AG 2002

ENTRYPreprocessor Statements

FORMAT-BUFFER
The FORMAT-BUFFER statement instructs the preprocessor to generate an Adabas format buffer and insert it into
the 3GL member at the position of the statement. XRef data is written for the file and each field in the file.

Syntax with Positional Parameters

EXEC ADABAS FORMAT-BUFFER
 <file-name><format-buffer-name>
 <sync><offset><dcl>
 <adabas-version><buffer-format>
 <literal-delimiter>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS FORMAT-BUFFER
 FILE=<file-name>
 FORMAT-BUFFER-NAME=<format-buffer-name>
 SYNC=<sync>
 OFFSET=<offset>
 DCL=<dcl>
 ADA-VER=<adabas-version>
 FORMAT=<buffer-format>
 DELIMITER=<literal-delimiter>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Copyright Software AG 20024

Preprocessor StatementsFORMAT-BUFFER

Parameters

file-name Specifies the ID of the file object in Predict. This parameter is mandatory. The file can be one
of the following types:

Adabas file (type A), where parameter Adabas SQL usage may not be set to Y.
Adabas userview (type U)

format-buffer-nameThe name to be given to the format buffer in the target program. In COBOL, this may be up to
30 characters long; in PL/I, up to 31; and in BAL, up to 8 characters. The default value is the
same as in the respective generation function.

sync Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL specification
Synchronized=S.

offset L,Y,P
The total length of the code will be included in the format buffer.

V
A constant will be generated for the format buffer length.

dcl Only applies to PL/I include code.

Y
The generated code will be preceded by a declare statement DCL and will end with a
semicolon instead of a comma.

adabas-version The version of Adabas for which the copy code of the Adabas files and userviews is to be
generated.
See list of possible values in the section Adabas Version.

buffer-format Y
Normal format for format buffer. Adabas groups, standard formats and lengths are used
whenever possible. The resulting format buffers are then as short as possible.

F
Full format for format buffer. The format buffer will include field length and format.

literal-delimiter Only valid for COBOL copy code.

S
single quotes

D
double quotes

GENERATE
The statement GENERATE instructs the preprocessor to generate copy code from Predict file objects and insert it
into the 3GL member at the position of the statement. XRef data is written for the file and each field in the file.

5Copyright Software AG 2002

GENERATEPreprocessor Statements

Generation can be performed for Assembler, COBOL and PL/I. See table of valid file types and languages below.

The generated copy code will be written to the source area and then copied into the source program.

Code File Type Assembler COBOL PL/I

A Adabas file Y Y Y

B Adabas SQL view Y Y Y

BT, BV Adabas D table/view Y

D, E DB2 table/view Y Y Y

F rdb file Y Y Y

J IMS segment layout Y Y Y

JT, JV INGRES table/view Y Y

L logical VSAM file Y Y Y

M ISAM file Y Y Y

O other file Y Y Y

OT, OV ORACLE table/view Y Y

S sequential file Y Y Y

T rms file Y Y Y

U Adabas user view Y Y Y

V VSAM file Y Y Y

X General SQL file Y Y Y

XT, XV INFORMIX table/view Y

YT, YV SYBASE table/view Y

1 LEASY Y Y Y

2 ISAM BS2000 Y Y Y

Generating Assembler Copy Code

Syntax with Positional Parameters

EXEC ADABAS GENERATE <filename><prefix><suffix><dsect>
 <dc-ds><nr-comments><offset><init>
 <validation><truncation><dsect-name><align>
 <equ><adabas-version><generate-format-buffer>
 <format-buffer-name><counter-length>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS GENERATE FILE=<file-name>
 PREFIX=<prefix>
 SUFFIX=<suffix>
 DSECT=<dsect>
 DC-DS=<dc-ds>
 NR-COMMENTS=<nr-comments>
 OFFSET=<offset>

Copyright Software AG 20026

Preprocessor StatementsGenerating Assembler Copy Code

 INIT=<init>
 VALIDATION=<validation>
 TRUNCATION=<truncation>
 RECORD-BUFFER-NAME=<dsect-name>
 SYNC=<align>
 EQU=<equ>
 ADA-VER=<adabas-version>
 FORMAT-BUFFER=<generate-format-buffer>
 FORMAT-BUFFER-NAME=<format-buffer-name>
 COUNTER-LENGTH=<counter-length>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Details of the parameters are given in the following table and also in the section Generation in this documentation. If
a parameter is omitted, the default value defined in Predict by the DDA will be used. See the section Defaults in the
Predict Administration documentation.

If the statement is entered using positional parameters and no prefix or no suffix is required, an asterisk (*) should be
substituted for the parameter <prefix> or <suffix>.

Parameters

file-name ID of the Predict file object from which the Assembler copy code is to be generated. This
parameter is mandatory. See table of valid file types in the description of Parameter
Generate.

prefix A prefix for the field names.
Maximum length: 8 characters.

suffix A suffix for the field names.
Maximum length: 8 characters.

dsect Y
The copy code will be generated as an ASSEMBLER DSECT (dummy section).
The DSECT will have the name specified by the <dsect-name> parameter, or the file ID if
no <dsect-name> parameter is supplied.

dc-ds DC
Assembler DC (define constant) instructions will be generated.

DS
Assembler DS (define storage) instructions will be generated.

nr-comments Specifies the number of abstract lines per field (0-16) which will be included in the
generated code.

7Copyright Software AG 2002

Generating Assembler Copy CodePreprocessor Statements

offset Y
Include the offset of each item in the record buffer structure (relative to the beginning of
the structure) in decimal and hexadecimal formats as a comment. The total length of each
buffer is also included.

P
Include the absolute position (offset+1) as a comment.

L
Include the total lengths of the record buffer and the format buffer as a comment.

V
Only allowed if parameters As DSECT=N and With DC or DS=DC.
The file number and the calculated lengths of the record buffer and the format buffer are to
be generated as constants in the copy code. The name of the file number constant is the
record buffer name with N as prefix. The name of each length constant is the appropriate
buffer name with L as prefix. Each name is prefixed, suffixed, validated and truncated in
the same way as any other field name.

N
No offset.

init This option takes effect only when With DC or DS=DC and As DSECT is set to N.

N
No initialization.

Y
Statements are generated to initialize the structure with the value specified for Init value in
the corresponding field object in Predict. Fields with no value for Init value are initialized
with zeros or blanks.
Aligned 8-digit fields with format B or I are not initialized.
In a PE group with the 3GL specification Gr.structur set to blank, only the first occurrence
of each field is initialized.

validation Determines how invalid characters in a field name are handled.

blank
Invalid characters will result in an error message but will not be deleted.

rep.char.
Invalid characters will be replaced by this character. Valid values: letters A-Z, digits 0-9, $,
§ or #.

*
Invalid characters will be deleted.

truncation Specifies which characters are deleted if a generated field name is longer than 8 characters:

L
truncate from the left

R
truncate from the right

M
truncate from the middle.

Copyright Software AG 20028

Preprocessor StatementsGenerating Assembler Copy Code

dsect-name Specifies the name of the record buffer in the generated structure. The effect of this
parameter depends on parameter dsect.

align Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL specification
Synchronized= S.

equ Y
EQU statements are to be generated for fields of length 1 whose format is not P and
comment lines are to be generated for other fields, using any condition names defined as
attributes of the Predict field objects. These names are prefixed, suffixed, validated and
truncated in the same way as field names.

For fields of format L where no condition name was specified, a condition name is
generated by concatenating the field name "Example" to the prefix N.

In this case the following statement is generated:

NEXAMPLE EQU X’00’.

adabas-version The version of Adabas for which the copy code of the Adabas files and userviews is to be
generated.
See list of possible values in the section Adabas Version.

generate-format-bufferFormat buffer generation for Assembler copy code is only allowed if parameters As
DSECT=N and With DC or DS=DC.
The contents of the format buffer will correspond exactly to the contents of the record
buffer. Only valid for files of type A (with parameter Adabas SQL usage set to N) or for
files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths are
used whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

format-buffer-name Specifies the label (name) of the format buffer in the generated structure. If omitted, the
file ID prefixed by F is used.

counter-length Length of additional counter fields: Valid values: 1, 2.

9Copyright Software AG 2002

Generating Assembler Copy CodePreprocessor Statements

Generating COBOL Copy Code

Syntax with Positional Parameters

EXEC ADABAS GENERATE <file-name><prefix><suffix> <start-level>
 <level-increment><shift-number><nr-comments>
 <offset><init><validation><truncation>
 <record-buffer-name><cond-name><sync>
 <indexed><depending>
 <adabas-version><generate-format-buffer>
 <format-buffer-name>
 <check-name>
 <literal-delimiter>
 <decimal-char>
 <redefine-name>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS GENERATE FILE=<file-name>
 PREFIX=<prefix>
 SUFFIX=<suffix>
 START-LEVEL=<start-level>
 LEVEL-INCREMENT=<level-increment>
 SHIFT-NUMBER=<shift-number>
 NR-COMMENTS=<nr-comments>
 OFFSET=<offset>
 INIT=<init>
 VALIDATION=<validation>
 TRUNCATION=<truncation>
 RECORD-BUFFER-NAME=<record-buffer-name>
 COND-NAME=<cond-name>
 SYNC=<sync>
 INDEXED=<indexed>
 DEPENDING=<depending>
 ADA-VER=<adabas-version>
 FORMAT-BUFFER=<generate-format-buffer>
 FORMAT-BUFFER-NAME=<format-buffer-name>
 CHECK-NAME=<check-name>
 DELIMITER=<literal-delimiter>
 DEC-CHAR=<decimal-char>
 REDEFINE-NAME=<redefine-name>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Details of the parameters are given in the following table and also in the section Generation in this documentation. If
a parameter is omitted, the default value defined in Predict by the DDA will be used. See the section Defaults in the
Predict Administration documentation.

If the statement is entered using positional parameters and no prefix or no suffix is required, an asterisk (*) should be
substituted for the parameter <prefix> or <suffix>.

Parameters

file-name ID of the Predict file object from which the COBOL copy code is to be generated. This
parameter is mandatory. See table of valid file types in the description of Parameter
Generate.

Copyright Software AG 200210

Preprocessor StatementsGenerating COBOL Copy Code

prefix A prefix for the field names.
Maximum length: 16 characters.

suffix A suffix for the field names.
Maximum length: 16 characters.

start-level Specifies the starting level of the generated record buffer. Valid values are in the range 1 -
40.

level-increment Specifies the level-increment.
Valid values are in the range 1 - 40.

shift-number The number of positions to be shifted right when a level number which is higher than the
current level number is encountered. Valid values are in the range 0 - 9.

nr-comments Specifies the number of abstract lines per field that will be included in the generated code.
Valid values are in the range 0 - 16.

offset Y
The offset of each item in the record buffer structure (relative to the beginning of the
structure) in decimal and hexadecimal formats is to be included as a comment. The total
length of each buffer is also included.

P
As above, but the absolute position (offset+1) is included as a comment.

L
The total lengths of the record buffer and the format buffer are to be included as a
comment.

V
The file number and the calculated lengths of the record buffer and the format buffer are to
be generated as constants in the copy code. The name of the file number constant is the
record buffer name prefixed by N-.
The name of each length constant is the appropriate buffer name prefixed by L-.
Each name is prefixed, suffixed, validated and truncated in the same way as any other field
name.

N
No offset.

init Y
The fields will be initialized wherever possible using a COBOL VALUE clause. Any fields
with INIT VALUEs in their Predict objects will be initialized with those values; other
fields will be initialized with low values (zeros or spaces).

S
Only fields with INIT VALUEs in the corresponding Predict object will be initialized.

N
No initialization.

11Copyright Software AG 2002

Generating COBOL Copy CodePreprocessor Statements

validation Determines how invalid characters in a field name are handled.

blank
Invalid characters will result in an error message but will not be deleted.

rep.char.
Invalid characters will be replaced by this character. Valid values: letters A-Z, digits 0-9 or
hyphen.

*
Invalid characters will be deleted.

truncation Specifies which characters are deleted if a generated field name is longer than 30
characters:

L
truncate from the left

R
truncate from the right

M
truncate from the middle.

record-buffer-name Specifies the name of the record buffer in the generated structure. If omitted, the file ID is
used.

cond-name Y
Any condition names defined in the Predict field objects are to be generated on level 88,
provided that the respective field objects have one of the following formats:

A
All lengths
N or P
Less than 19 digits
I or B
2, 4 or 8 digits
L
A FALSE-condition will always be generated. The Condition name is then generated
by concatenating the field name to the prefix N- (if not specified explicitly).

These names are prefixed, suffixed, validated and truncated in the same way as field
names.

sync Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL specification
Synchronized = S.

Copyright Software AG 200212

Preprocessor StatementsGenerating COBOL Copy Code

indexed Y
The COBOL clause INDEXED BY will be generated for all repetitive fields (MU/MC and
PE/PC).

S
This clause will be generated only for repetitive fields which have INDEXED BY NAMEs
in their Predict objects.

N
This clause will not be generated for any field.

depending Y
COBOL attribute OCCURS DEPENDING ON is generated for a field or field group in a
file if it has type PE or MU and DEPENDING ON NAME is specified for this field.
These names are prefixed, suffixed, validated and truncated in the same way as field
names.

Note:
This option is not allowed for files of type A or U.
This option is ignored when using a WANG COBOL compiler.

adabas-version The version of Adabas for which the copy code of the Adabas files and userviews is to be
generated. See table of valid values in the section Adabas Version.

generate-format-buffer The contents of the format buffer will correspond exactly to the contents of the record
buffer. Only valid for files of type A (with parameter Adabas SQL usage set to N) or
for files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths
are used whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are
included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

format-buffer-name Specifies the name of the format buffer in the generated structure. If omitted, the file ID
prefixed by FORMAT-BUFFER- is used.

check-name A
COBOL field names are checked for uniqueness throughout the whole structure.

Y
Structure levels are included in the validation check of the field names: if two fields have
the same name, they must be separated by at least one field with a different name and a
lower-level number.

N
No check for duplicate field names is performed

13Copyright Software AG 2002

Generating COBOL Copy CodePreprocessor Statements

literal-delimiter S
single quotes,

D
double quotes

decimal-character P
point,

C
comma

redefine-name Determines how COBOL field names for Predict fields of type RE are generated:

F
The string FILLER is used as redefinition name.

S
The suffix REGR is added to the Predict field ID. If a field is redefined more than once, the
suffix will have the form REGRn, where n is an integer incremented by 1 for each field of
type RE.

Generating PL/I Include Code

Syntax with Positional Parameters

EXEC ADABAS GENERATE <file-name><prefix><suffix>
 <start-level><level-increment><shift-number>
 <nr-comments><offset><init><struct-as-char>
 <static><validation><truncation>
 <record-buffer-name><align><dcl>
 <adabas-version><generate-format-buffer>
 <format-buffer-name><check-name>
 <numeric sign><position of sign>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS GENERATE FILE=<file-name>
 PREFIX=<prefix>
 SUFFIX=<suffix>
 START-LEVEL=<start-level>
 LEVEL-INCREMENT=<level-increment>
 SHIFT-NUMBER=<shift-number>
 NR-COMMENTS=<nr-comments>
 OFFSET=<offset>
 INIT=<init>
 STRUCTURE=<struct-as-char>
 STATIC=<static>
 VALIDATION=<validation>
 TRUNCATION=<truncation>
 RECORD-BUFFER-NAME=<record-buffer-name>
 SYNC=<align>
 DCL=<dcl>
 ADA-VER=<adabas-version>
 FORMAT-BUFFER=<generate-format-buffer>
 FORMAT-BUFFER-NAME=<format-buffer-name>

Copyright Software AG 200214

Preprocessor StatementsGenerating PL/I Include Code

 CHECK-NAME=<check-name>
 NUM-SIGN=<numeric sign>
 POS-SIGN=<position of sign>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Details of the parameters are given in the following table and also in the section Generation in this documentation. If
a parameter is omitted, the default value defined in Predict by the DDA will be used. See the section Defaults in the
Predict Administration documentation.

If the statement is entered using positional parameters and no prefix or no suffix is required, an asterisk (*) should be
substituted for the parameter <prefix> or <suffix>.

Parameters

file-name ID of the Predict file object from which the PL/I include code is to be generated. This
parameter is mandatory.
See table of valid file types in the description of Parameter Generate.

prefix Specifies a prefix for the field names.
Maximum length: 16 characters.

suffix Specifies a suffix for the field names.
Maximum length: 16 characters.

start-level Specifies the starting level of the generated record buffer.
Valid values are in the range 1 - 40.

level-increment Specifies the level-increment.
Valid values are in the range 1 - 40.

shift-number The number of positions to be shifted right when a level number which is higher than the
current level number is encountered.
Valid values are in the range 0 - 9.

nr-comments Specifies the number of abstract lines per field that will be included in the generated code.
Valid values are in the range 0 - 16.

15Copyright Software AG 2002

Generating PL/I Include CodePreprocessor Statements

offset Y
The offset of each item in the record buffer structure (relative to the beginning of the
structure) in decimal and hexadecimal formats is to be included as a comment. The total
length of each buffer is also included.

P
As above, but the absolute position (offset+1) is included as a comment.

L
The total lengths of the record buffer and the format buffer are to be included as a
comment.

V
The file number and the calculated lengths of the record buffer and the format buffer are to
be generated as constants in the include code. The name of the file number constant will be
the record buffer name prefixed by N_.
The name of each length constant will be the appropriate buffer name prefixed by L_.
Each name is prefixed, suffixed, validated and truncated in the same way as any other field
name.

N
No offset.

init Y
The fields will be initialized wherever possible. Any fields with INIT VALUEs in their
Predict objects will be initialized with those values; other fields will be initialized with low
values (zeros or spaces).

S
Only fields with INIT VALUEs in the corresponding Predict object will be initialized.

N
No initialization.

struct-as-char Y
The entire generated structure will be declared at the end of the record buffer as a single
character-string.

static Y
The structure will be declared with the attribute STATIC.

validation Determines how invalid characters in a field name are handled.

blank
Invalid characters will result in an error message but will not be deleted.

rep.char.
Invalid characters will be replaced by this character. Valid values: letters A-Z, digits 0-9, $,
§, # or _ (underscore).

*
Invalid characters will be deleted.

Copyright Software AG 200216

Preprocessor StatementsGenerating PL/I Include Code

truncation Specifies which characters are deleted if a generated field name is longer than 31
characters:

L
truncate from the left

R
truncate from the right

M
truncate from the middle.

record-buffer-name Specifies the name of the record buffer in the generated structure. If omitted, the file ID is
used.

align Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL specification
Synchronized= S.

Note:
This parameter only takes effect with fields that have the PL/I attribute FIXED BIN or
FLOAT DEC.

dcl Y
The generated code will be preceded by a declare statement DCL and will end with a
semicolon instead of a comma.

adabas-version The version of Adabas for which the include code of the Adabas files and userviews is to
be generated. See table of valid values in the section Adabas Version.

generate-format-bufferThe contents of the format buffer will correspond exactly to the contents of the record
buffer. Only valid for files of type A (with parameter Adabas SQL usage set to N) or for
files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths are
used whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

format-buffer-name Specifies the name of the format buffer in the generated structure. If omitted, the file ID
prefixed by FORBUF_ is used.

17Copyright Software AG 2002

Generating PL/I Include CodePreprocessor Statements

check-name A
Field names are checked for uniqueness throughout the whole structure.

Y
Structure levels are included in the validation check of the field names: if two fields have
the same name, they must be separated by at least one field with a different name and a
lower level number.

N
No check for duplicate field names is performed

numeric sign Specifies which of the PL/I picture characters T, I or R is to be used for the representation
of numeric values of format packed with sign or unpacked with sign.

position of sign Defines the position of the sign in a numeric field:

L
left

R
right.

PROGRAM
The member name can be passed to the preprocessor with the PROGRAM statement:

Syntax with Positional Parameters

EXEC ADABAS PROGRAM <member-name><library>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS PROGRAM
 PROGRAM-ID=<member-name>
 LIBRARY-ID=<library>
 END-EXEC

Note:
If member and library are specified when the Preprocessor is called, these values are taken. The statement
EXEC ADABAS PROGRAM is then not necessary.

Parameters

member-nameThe name used to identify the XRef data. Maximum length: 8 characters.

library If the parameter library is specified, a system of type G (3GL application) that contains this library
name in its implementation pointer must have been defined before.
If no library is specified, the *SYSCOB*, *SYSBAL* or *SYSPLI* libraries are used.

Copyright Software AG 200218

Preprocessor StatementsPROGRAM

	Preprocessor Statements
	Overview of Preprocessor Statements
	Statements to Include Copy Code Generated from Predict file objects
	Statements to Write XRef Data for 3GL Copy/Include Code or Function Calls

	Format of Preprocessor Statements
	Using Keyword and/or Positional Parameters

	CALL
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	COPY
	
	Copying a Member from a File that has been Modified after Generation

	Syntax
	with Positional Parameters
	with Keyword Parameters

	ENTRY
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	FORMAT-BUFFER
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	GENERATE
	Generating Assembler Copy Code
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	Generating COBOL Copy Code
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	Generating PL/I Include Code
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	PROGRAM
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

